If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-2400=0
a = 1; b = 40; c = -2400;
Δ = b2-4ac
Δ = 402-4·1·(-2400)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{7}}{2*1}=\frac{-40-40\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{7}}{2*1}=\frac{-40+40\sqrt{7}}{2} $
| x/3-x+8=0 | | 5/3x-6=8+5/12x | | x^2-110x+2925=0 | | -5=x=-2 | | (5−x)1/2−2x=0(5−x)1/2−2x=0. | | 9x-81+4=9x+7 | | -14x^2+1680x-49,000=0 | | 9x^2+3x-7x-21=0 | | 3=-7b+6b | | 3/(y-4)= | | 0.2(x-4)=2 | | 3(2x-1)-2(2x-3)=5x | | 2/3(x+1)+x=1/6 | | (2x+5)/8-1=3 | | 2e+20=7e+8 | | 1/x=42.8 | | 3-5(4x+6)=-9 | | x/(9.9+x)=0.1 | | 9=x/7.68+3 | | -7=-2n+3n | | 12+3x=5x-6 | | 8(×-7)=5x+3x+3 | | X+2+3+3x+4=-30 | | 9x2+3x-7x-21=-9 | | 3(x1/2-8=x+4) | | x−8=-12 | | x+2(x-7)+x+4=80 | | -20=1+4v+3v | | 3x^2+9x-10=18-8x | | 6x+(x+19)=8x+5 | | 4x+1+6=-17 | | x+2x-7+x+4=80 |